A well-chosen replication strategy can effectively reduce the uncertainty for an analytical method, enabling appropriate decisions regarding pharmaceutical quality.
For a robustly developed analytical method, a well-chosen replication strategy can effectively reduce the uncertainty. A statistically sound approach involves replicating the factors associated with large amounts of variation followed by an appropriate analysis. The amount of reduction in uncertainty needed is informed by the precision requirements of the analytical target profile (ATP), ensuring that risks of making inappropriate quality decisions are minimized.
In this article, the authors describe two case studies: the use of a high-performance liquid chromatography separation method for a small-molecule API and a bioassay for a biopharmaceutical or vaccine.
Read this article as a PDF.Phil Borman, DSc, is senior fellow and director of product quality, GlaxoSmithKline; Timothy Schofield is owner and consultant, CMC Sciences, LLC; and David Lansky, PhD, is president, Precision Bioassay, Inc.
Pharmaceutical Technology
Vol. 45, No. 4
April 2021
Pages: 46–56
When referring to this article, please cite it as P. Borman, T. Schofield, and D. Lansky, “Reducing Uncertainty of an Analytical Method through Efficient Use of Replication,” Pharmaceutical Technology 45 (4) 2021.
UK Medicines Manufacturing Skills Centre Stresses Skill Development after Budget Announcement
November 8th 2024A £520 million investment for manufacturing capacity was announced by Chancellor of the Exchequer, Rachel Reeves, but academic and industry leaders stress the money should be used to train personnel.