Study Demonstrates Potential Method for Treating Congenital Diseases In Utero

News
Article

A new study proposes a new way to potentially treat congenital diseases in utero.

A team of researchers have demonstrated a potential method for treating congenital diseases in utero. In a new study published on Sept. 28, 2016 in Nucleic Acids Research, scientists from Rosalind Franklin University of Medicine and Oregon Health & Science University demonstrate the drug delivery of antisense oligonucleotides (ASOs) to amniotic fluid in utero to treat genetic defects in mice.

The World Health Organization estimates that worldwide approximately 303,000 newborns die four weeks after birth from congenital anomalies. Congenital anomalies contribute to long-term disability, and it can be difficult to pinpoint the exact cause of these defects. “The best way to treat a disease that we know will emerge at birth is to deliver a therapy in utero to the developing fetus before irreparable damage occurs,” John Brigande, PhD, principal investigator in the Oregon Hearing Research Center said in a statement.

Delivering therapies during pregnancy can be challenging because scientists must regulate risks to both the mother and child. ASOs are favored for treating genetic diseases because they have good pharmacologic, pharmacokinetic, and toxicological properties, the researchers say. However, the safety and efficacy of ASOs in utero is not known. Some stem-cell and gene therapies are currently being examined for use in utero, the study notes, but using pharmacologic agents, such as ASOs, have not been investigated.

In this study, scientists use the metastasis associated lung adenocarcinoma transcript 1 (MALAT1) to determine if ASOs can target gene expression in the amniotic cavity. Researchers injected ASOs into the amniotic cavity of mice at embryonic day 13–13.5 and then assessed “ASO distribution and MALATI RNA expression after birth.” The scientists found that the injection of ASOs did have an effect on RNA transcription in the liver, kidney, and inner ear of the mice after birth. The researchers suggest that “intra-amniotic cavity injection of ASOs represents a relatively non-invasive modality for the treatment of congenital disease or other conditions that adversely affect fetal growth and development.” Although more research is needed, this method could potentially be used to alter aberrant gene expressions in utero.

Source: Nucleic Acids Research, Eureka Alert

 

Recent Videos
Miguel Forte from ISCT and Kiji Therapeutics talks about the potential impact of a changing European political landscape.
Miguel Forte from ISCT and Kiji Therapeutics provides his insights into the changing political landscape in the US as well as legislative and regulatory adjustments
Miguel Forte from ISCT and Kiji Therapeutics chats about expectations for 2025 and the future technology agenda for industry.
Sheryl Johnson from Orbia Fluor & Energy Materials chats about gender diversity, how women are helping to advance innovation, sustainability challenges, and progress in the field of inhaled drugs.
Mike Baird from Schlafender Hase gives his predictions for how AI and ML may find use in the industry moving forwards and provides some predictions about M&A and the changing US government administration.
Mike Baird from Schlafender Haser discusses industry trends from 2024 and those expected to have an impact in 2025 from the perspective of a software developer.
Preeya Beczek from Beczek.COM gives her thoughts on the areas to watch with the new US administration and how Europe might be finalizing preparations for previous legislative changes
Related Content