The tableting science anti-research (TSAR) project seeks to understand why certain formulations stick to tablet tooling.
This article provides an overview of I Holland's tableting science anti-stick research (TSAR) project, which the company is conducting in collaboration with the University of Nottingham in the United Kingdom. The TSAR project seeks to understand why certain formulations stick to tablet tooling, a major problem often encountered by tablet manufacturers.
Problems during tablet manufacturing often result in process downtime and higher operating costs. Some of these problems can be minimized or eliminated with proper maintenance and storage of tablet tooling. Pharmaceutical Technology spoke to experts at I Holland about the causes of common problems such as tablet weight variation, hardness or breakage issues, capping, picking, and sticking, as well as a seven-step process for tool care.
FotografiaBasica/Getty Images
I Holland representatives also discussed the company's research collaboration with Nottingham University's School of Pharmacy in the United Kingdom, which seeks to understand why certain formulations stick to tablet tooling, a major problem that is often encountered by tablet manufacturers. The aim of this joint project is to develop a predictive tool that will enable the identification of the best coating solution for formulation-sticking issues without the need of carrying out full-scale trial-and-error experiments with several anti-stick coatings.
Tableting science
PharmTech: What is tableting science?
I Holland: Tableting science is part of I Holland's core service offering. It encompasses many aspects of our R&D capability, including work with academic and technical partners on scientific research projects that help us to improve our understanding of why a punch or die performs well. For example, for years many tooling manufacturers have polished punches to an optimum mirror finish because they know it helps the punch to perform more effectively, but no one really understood why this was the case. Punch and die manufacturers are essentially engineering companies and often have a reluctance to become involved in wider tableting issues.
Our investment in tableting science will help tablet manufacturers to reduce expenditures that can be associated with poor tooling performance further down the line by eliminating many issues before the punch or die hits production. For example, 'sticking' is a major tablet-production issue that we are trying to tackle through our work with the University of Nottingham on the tableting science anti-stick research (TSAR) project. We hope to deliver a predictive tool that will remove the need to undertake expensive coating trials to determine the best coating solution.
Common problems in tableting
PharmTech: What are the common problems encountered in tablet manufacturing?
I Holland: There are many common problems encountered in tablet manufacturing. Some of the most common of these are listed below. Each of these problem areas may have several potential causes, but brief overviews of the main ones are summarized below:
Other tooling related problems exist such as:
Punch and die manufacturers should be able to provide training on these issues and how to solve them (1).
The seven-step process
PharmTech: What are the solutions to these problems?
I Holland: Depending on the exact causes of each of the problems previously described, there are several potential solutions. As a guide, following a simple seven-step process for tool care and maintenance can help to minimize the potential occurrence of most tableting and tooling issues (2). The seven-step process is a logically planned and professional approach to tooling maintenance and storage as summarized below:
Anti-stick research
PharmTech:Could you tell us more about the TSAR project, for which you are collaborating with the University of Nottingham?
I Holland: Since the launch of our PharmaCote range of punch and die coatings more than five years ago, I Holland has been increasingly called on to solve sticking issues within the pharmaceutical sector as tablet manufacturers realize that these problems can be eliminated without reducing product yield and investing in expensive magnesium stearate systems. The traditional way of troubleshooting a sticking problem would have been to supply a customer with a test set of tools containing many different punch and die coatings. A full compression trial would be carried out at the customer's site to ascertain the coating that would most effectively solve the sticking problem. This approach involves a significant investment for the customer in the tooling as well as in time.
The aim of the TSAR project is to develop a predictive tool that will allow us to identify which punch and die coating is most likely to solve these sticking issues, thus removing the need to carry out full-scale compression trials with all of the anti-stick coatings. The development of the predictive tool will not commence until we have gathered sufficient interaction data from many different excipients and active ingredients. This work is currently in progress as we are testing several samples supplied by our customers.
We aim to use newly developed multivariant analysis techniques linked to nanoscale surface chemistry and morphology techniques such as atomic force microscopy (AFM), time-of-flight secondary ion mass spectroscopy (ToFSIMS), Raman spectroscopy, contact angle measurements, X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), and laser profilometry. Once the data are gathered, we will use a principle component analysis tool to allow us to group the different excipients/active ingredients. Only after this process, will we be able to start the development of the predictive tool.
We are currently halfway through the two-year project and have spent the first year solely gathering data from various products supplied to us by different customers. The most utilized piece of equipment to date has been the AFM, which allows us to quantitatively map, at the nanoscale, adhesion on PharmaCote coated tablet punches using single drug/excipient particles. The low adhesion force measurements (nN) gathered within the AFM indicates the level of Van der Waals forces that are present. We are also changing the humidity and temperature within the testing environment to gather data on capillary forces that are present. Only when all the ingredients of the formulation are tested in this analytical way, do we move the formulation into a production environment and compress tablets using the same PharmaCote coated tooling.
This 'real world' checking allows the results of the analytical testing to be verified in a production environment and gives the customer the reassurance that they are purchasing the optimum solution for their specific problem. It cannot be stressed enough how each sticking problem is unique and can vary significantly from site to site, press to press, and product to product, which makes laboratory compression testing vital.
References
1. Eurostandard Educational Collection 2010 Edition.
2. T. Higgins, Pharm. Tech. 37 (2) 30–31 (2013).
Drug Solutions Podcast: A Closer Look at mRNA in Oncology and Vaccines
April 30th 2024In this episode fo the Drug Solutions Podcast, etherna’s vice-president of Technology and Innovation, Stefaan De Koker, discusses the merits and challenges of using mRNA as the foundation for therapeutics in oncology as well as for vaccines.