Re-engineered Yeast Glycosylation System Might Replace Mammalian Cell Expression

News
Article

ePT--the Electronic Newsletter of Pharmaceutical Technology

Scientists from GlycoFi, Inc., a wholly owned subsidiary of Merck & Co, in collaboration with Dartmouth-Hitchcock Medical Center, have engineered yeast cells capable of producing a broad range of recombinant therapeutic proteins with fully human sugar structures (glycosylation).

Lebanon, NH (Sept. 7)-Scientists from GlycoFi, Inc. (www.glycofi.com), a wholly owned subsidiary of Merck & Co. (Whitehouse Station, NJ, www.merck.com), in collaboration with Dartmouth-Hitchcock Medical Center, have engineered yeast cells capable of producing a broad range of recombinant therapeutic proteins with fully human sugar structures (glycosylation). Until now, these sugar structures, which ensure a glycoprotein’s biological activity and half-life, required the expression of therapeutic glycoproteins from mammalian host cells.

As reported in the Sept. 8, 2006, issue of Science, the research team genetically engineered the Pichia pastoris yeast to secrete human glycoproteins with fully complex, terminally sialyated N-glycans. Recombinant erythropoietin, which stimulates the production of red blood cells, was successfully expressed using these yeast strains, purified, and its activity demonstrated in vivo.

According to GlycoFi, the work “has the potential to eliminate the need for mammalian cell culture, while improving control over glycosylation and improving performance characteristics of many therapeutic proteins.” The achievement follows a six-year study involving not only the elimination of yeast-specific glycosylation reactions but also the introduction of 14 heterologous genes.

Yeast produces higher recombinant protein titers in shorter fermentation times compared with mammalian-culture systems. Yeast systems also do not have the risk of viral contamination associated with animal-based media. Tillman Gerngross, PhD, chief scientific officer of GlycoFi and professor of Bioengineering at Dartmouth College, says the advantages of yeast-expression technology “provide improvements in product uniformity and overall production economics. By engineering yeast to perform the final and most complex step of human glycosylation, we are now able to conduct far more extensive structure-function investigations on a much wider range of therapeutic protein targets.”

Recent Videos
Miguel Forte from ISCT and Kiji Therapeutics talks about the potential impact of a changing European political landscape.
Miguel Forte from ISCT and Kiji Therapeutics provides his insights into the changing political landscape in the US as well as legislative and regulatory adjustments
Miguel Forte from ISCT and Kiji Therapeutics chats about expectations for 2025 and the future technology agenda for industry.
Sheryl Johnson from Orbia Fluor & Energy Materials chats about gender diversity, how women are helping to advance innovation, sustainability challenges, and progress in the field of inhaled drugs.
Mike Baird from Schlafender Hase gives his predictions for how AI and ML may find use in the industry moving forwards and provides some predictions about M&A and the changing US government administration.
Mike Baird from Schlafender Haser discusses industry trends from 2024 and those expected to have an impact in 2025 from the perspective of a software developer.
Preeya Beczek from Beczek.COM gives her thoughts on the areas to watch with the new US administration and how Europe might be finalizing preparations for previous legislative changes
Related Content