Fifty years after the man walked on the Moon, space-based science is benefiting Earth.
The summer of 1969 was a watershed moment for science when, on July 20, man first walked on the Moon. The story of the Apollo 11 flight is well-known. Astronaut Neil Armstrong’s words as he stepped on to the surface, “That’s one small step for man, one giant leap for mankind,” resounded around the world and became one of the most recognized quotes of a generation.
I observed the Moon landing as a child and can confirm: a man walking on the Moon was a very big deal. My parents let me stay up past bedtime to watch the flickering images on the television. We were amazed at what was transpiring on this other world.
The technology used for the trip to the Moon pales in comparison to current materials, instruments, computing, and communication capabilities. The computing power in the Apollo 11 ship was less than that of an average cell phone today. The astronauts appeared ghostlike as they moved about the Moon; technology limits prevented transmission of higher resolution images.
In his 1962 “We choose to go to the Moon” speech at Rice University in Houston, President John F. Kennedy talked about the need for the nation to accelerate space exploration efforts (1). At the time, the United States was racing to catch up in a space race with the Soviet Union.
On July 20, 1969, the US crossed the Moon’s finish line first. On subsequent missions to the Moon, astronauts stayed longer and conducted more sophisticated experiments. But public interest lagged; going the Moon was no longer an achievement. Later manned missions to the International Space Station (ISS), and unmanned missions to other corners of the universe, generated valuable information but did not reach the prominence of Apollo 11. As the novelty of space exploration wore off, funding dried up. In recent years, the private sector has entered the race for the commercialization of space.
Space exploration, however, generated scientific benefits and practical applications beyond the spectacle of the Moon walks. A less-publicized statement in Kennedy’s 1962 speech described the prospects: “The growth of our science and education will be enriched by new knowledge of our universe and environment, by new techniques of learning and mapping and observation, by new tools and computers for industry, medicine, the home as well as the school,” he said.
The ISS, an orbiting laboratory 248 miles above Earth, functions as “an unparalleled opportunity to investigate how gravity and the extreme environment of space influence observations in the physical and life sciences-exploiting these effects to understand basic phenomena and advance commercial pursuits” (2).
The ISS website describes how studies of the effects of spaceflight on living organisms will enable scientists to learn more about biology, medicine, and biotechnology, and, in turn, advance pharmaceutical development. The laboratory also has unique features not found on Earth. Microgravity causes changes in gene expression, DNA regulation, cellular function and physiology, and 3D aggregation of cells. It also affects fluid dynamics, allowing improved growth of protein crystals and optimization of nanofluidics systems (3). Implementation partners serve as payload developers, preparing research studies for deployment in space.
Life-sciences experiments conducted on the ISS include protein crystallization studies to improve drug design; cell culture experiments to study osteoporosis and immunodeficiency; stem cell experiments for cardiovascular disease; fluid dynamics studies for diagnostics and drug delivery systems; and model-organism research to explore potential repurposing of existing drugs for other uses.
The journey to the Moon demonstrated man’s capabilities to innovate and explore. The ongoing benefits of an orbiting research lab are a testimony to that legacy.
1. NASA, John F. Kennedy Moon Speech–- Rice Stadium, Sept. 12, 1962.
2. ISS, Spaceflight R&D Spans Many Disciplines, www.issnationallab.org.
3. ISS, Life Sciences Research Onboard the ISS National Lab, www.issnational-lab.org.
Pharmaceutical Technology
Vol. 43, No. 8
August 2019
Page: 10
When referring to this article, please cite it as R. Peters, “The Moon, the Stars, and the Science Lab," Pharmaceutical Technology 43 (8) 2019.
Drug Solutions Podcast: A Closer Look at mRNA in Oncology and Vaccines
April 30th 2024In this episode fo the Drug Solutions Podcast, etherna’s vice-president of Technology and Innovation, Stefaan De Koker, discusses the merits and challenges of using mRNA as the foundation for therapeutics in oncology as well as for vaccines.
Drug Solutions Podcast: Applying Appropriate Analytics to Drug Development
March 26th 2024In this episode of the Drug Solutions Podcast, Jan Bekker, Vice President of Business Development, Commercial and Technical Operations at BioCina, discusses the latest analytical tools and their applications in the drug development market.
PostEra Expands Pfizer Partnership with AI Lab and ADC Collaborations
January 8th 2025The AI Lab was launched almost exactly three years ago and has produced several programs so far, at least one of which achieved its first scientific stage gate 40% faster than the teams originally forecasted.